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Abstract

This paper addresses the automation of particle accelera-

tor control through Reinforcement Learning (RL). It high-

lights the potential to increase reliable performance, espe-

cially in light of new diagnostic tools and the increasingly

complex variable schedules of certain accelerators. We fo-

cus on the physics simulation of the AWAKE electron line,

an ideal platform for performing in-depth studies that allow

a clear distinction between the problem and the performance

of different algorithmic approaches for accurate analysis.

The main challenges are the lack of realistic simulations and

partially observable environments. We show how effective

results can be achieved through meta-reinforcement learn-

ing, where an agent is trained to quickly adapt to specific

real-world scenarios based on prior training in a simulated

environment with variable unknowns. When suitable simu-

lations are lacking or too costly, a model-based method using

Gaussian processes is used for direct training in a few shots

only. The work opens new avenues for the implementation

of control automation in particle accelerators, significantly

increasing their efficiency and adaptability.

INTRODUCTION

Reinforcement learning presents significant potential for

addressing control issues that surpass the capabilities of

classical control theory. As a data-driven methodology, RL

acquires knowledge through direct interaction with the sys-

tems it regulates. Despite its impressive real-world achieve-

ments, such as piloting drones with superior skill compared

to human operators [1], RL faces several challenges that com-

plicate its application in real-world scenarios. First, these

algorithms typically require substantial amounts of data to

achieve reliable performance. Secondly, there is an inherent

trade-off between training stability and data efficiency, mak-

ing it difficult to optimise both simultaneously. For particle

accelerator control, leveraging the potential to enhance re-

liable performance is crucial, particularly with the advent

of new diagnostic tools and increasingly complex variable

schedules of some accelerators. Standard off-the-shelf al-

gorithms may not suffice, necessitating the development of

new strategies. We explore two innovative approaches to ad-

dress some of these challenges: Meta-Reinforcement Learn-

ing (Meta-RL) and Model-based Reinforcement Learning

(MBRL). These methods are evaluated using the AWAKE

electron steering environment, which serves as an excellent
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Figure 1: Overview of different approaches to train an RL

algorithm in accelerator controls.

benchmark due to its simplicity and non-trivial control task,

yet still corresponds to a real, measurable system. All dis-

cussed approaches have been successfully implemented and

tested in experiments on the actual machine.

METHODICAL APPROACHES

Figure as referenced in Fig. 1 illustrates various applica-

tions of reinforcement learning. It highlights that when the

system is accessible and adequate data is obtainable from the

real system, direct Model-free RL (MFRL) can be employed

using off-the-shelf algorithms such as stable on-policy prox-

imal policy [2] or sample-efficient off-policy algorithms like

soft actor critic [3]. This is only possible in rare cases [4].

Simulations can be useful for determining optimal hyperpa-

rameters for the RL algorithms and for making decisions

regarding the design of the function approximator before

applying direct MFRL on the machine as done in [5, 6]. In

some instances, simulations are both fast and precise enough

to train the agent entirely in a simulated environment before

real-world application. However, often simulations do not

perfectly model the real-world scenarios, presenting chal-

lenges in directly applying or retraining the agent on the

actual machine. In such situations, Meta-RL is beneficial as

it integrates prior knowledge from the simulations, ensuring

stable adaptation to the real machine in just a few steps.

In scenarios lacking even a simulation, MBRL can be ad-

vantageous. MBRL is noted for its extreme sample effi-

ciency and the potential to solve tasks in just a few iterations.

Nonetheless, this approach places significant computational

demands on making accurate inferences and performing

online optimization, which may be a limiting factor.



Meta reinforcement learning

Meta-RL advances machine learning by developing al-

gorithms that are adept at quickly adapting to new tasks,

essentially embodying the concept of "learning to learn" in

RL. Among the notable techniques is Model Agnostic Meta-

Learning (MAML), which seeks an optimal initial model

setting that can be rapidly adjusted to a diverse array of tasks

with minimal modifications, leveraging gradient-based op-

timization to efficiently identify parameters conducive to

quick adaptability [7].

Our focus on MAML stems from its broad utility and effec-

tiveness across various tasks. Within this framework, RL

tasks are treated as Markov Decision Processs (MDPs), with

variations in tasks reflected through differences in initial

states, dynamics, and rewards. The versatility of MAML

permits customization to diverse problem types, optimiz-

ing learning by fine-tuning initial model parameters for en-

hanced performance and adaptability over conventional pre-

training methods. Our implementation of MAML utilises

an action-dependent baselines and a trust region methods,

which boost the efficiency and stability of the learning pro-

cess [8].

Model-based Reinforcement Learning

Model-based Reinforcement Learning (MBRL) contrasts

with model-free approaches by constructing an internal

model of the world, which it uses to simulate interactions.

This method enhances sample efficiency by reducing the

need for direct system interaction. The process involves

gathering data to refine the model and leveraging the model

to improve the control policy. However, developing an effec-

tive policy can be challenging if the model is under-trained.

The GP-MPC algorithm [9] applied in the AWAKE project,

as described in [10] and [11], employs Gaussian Processs

(GPs) to model system dynamics and quantify epistemic

uncertainty—uncertainty due to limited data—thereby en-

hancing the model’s robustness. The Model Predictive Con-

trol (MPC) aspect optimizes future actions based on these

predictions, adapting to changes in the environment. This

integration results in a highly sample-efficient algorithm,

beneficial in scenarios where data is expensive or difficult

to collect.

PROBLEM DEFINITION

The AWAKE electron line is an excellent environment

for testing various algorithms [5, 11–14]. Initial RL agents

were developed for trajectory optimization on the AWAKE

electron line, aiming to match the efficiency of traditional

Singular Value Decomposition (SVD) algorithms [15] used

in control rooms. These agents guide the beam along a

specified path to achieve critical parameters at the line’s end

for further processes.

The electron production at AWAKE starts with a 5 MV

RF gun that boosts electrons to 18 MeV, traveling through

a 12 m beam line to the plasma cell. This path includes a

vertical shift of 1 meter and a 60-degree bend to meet the

Δs
i

Figure 2: Visualization of a beam steering problem in the

AWAKE electron line. Correctors are marked in green and

are succeeded by BPMs, depicted in violet. The state vector

s, consisting of components ΔB8 for each BPM indexed by 8,

represents the distance to the target. The measured trajectory

is shown as a dashed blue line, while the target trajectory is

displayed in red.

proton beam at the plasma cell entrance. Beam trajectory is

adjusted using 10 horizontal and 10 vertical steering dipoles,

monitored by 10 Beam Position Monitors (BPMs) in each

plane.

Defining the Markov Decision Process

The electron transfer line and its various components are

modeled using MAD-X [16], which simulates the trans-

fer functions from field to current for different magnets at

normalized strengths. Steering dipoles typically adjust tra-

jectories by about 1 mrad per corrector. Using MAD-X, the

response matrix, which shows BPM changes in relation to

corrector adjustments, is computed. For the RL agent to

operate effectively in the simulated environment, the obser-

vations s (BPM deviations from a reference trajectory, as

depicted in Fig. 2) and actions a (adjustments to the dipole

currents) need to align with the units and normalization of

the actual equipment settings.

The reward metric is the negative root mean square (RMS)

of deviations from the target trajectory, defined as A ∝ −||s | |,

as shown in Fig. 2.

To increase the challenge of the control task, initial trajec-

tories are purposefully set far from desired paths, and action

amplitudes are limited. This approach ensures that resolv-

ing an episode is not a simple one-step process but requires

a nont-trivial control strategy. In instances where trajec-

tory deviations become excessively large | |s | |max >= 10

mm, resulting in contact with the beam pipe, which pos-

sesses a diameter of 20 mm, the episode undergoes a reset.

Subsequently, the point of impact on the wall and all en-

suing measurements are assigned a value of 10 mm. This

assignment is justified by the fact that the beam is effectively

considered lost beyond the point of impact.

Distribution of MDP in the AWAKE Environment

To assess different scenarios of realisations of the envi-

ronment we utilize to train agents across a diverse range

of MDPs. We uniformly vary the quadrupole settings in

the AWAKE setup by ±25% from standard values to cap-

ture possible variability and uncertainty of model. Fig. 3
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